

MATERIAL DATENBLATT NI718 - LASERSCHMELZEN

Die genannten Werte sind Näherungswerte, die durch Umgebungseinflüsse und Bauteilgeometrien ggf. variieren können.

Ni718

- Hohe Korrosionsbeständigkeit
- Sehr gute Hitzebeständigkeit
- Hohe Festigkeit

Eigenschaften

- · Hohe Bruch-, Kriech- und Zugfestigkeit
- · ausgezeichnete kryogene Eigenschaften

Technische Eigenschaften Werte sind geometrieabhängig

Prüfung	Einheit	Werte
Oberflächengüte	Ra	5-7 (nach Bauprozess)
Bauteilgenauigkeit	%	± 0,1% (≙ ca. ± 50µm)
Reproduzierbarkeit	μm	Ca. ± 20µm
Kleinste Wandstärke	mm	0,2

Physikalische Eigenschaften

Prüfung	Einheit	Werte
Relative Dichte	%	>99.9
Dichte	g/cm³	8,2

Chemische Zusammensetzung

Bestandteil	% vom Gewicht		
Al	0,20-0,80		
В	≤0,006		
С	≥0,08		
Co	≤1,00		
Cr	17,00 - 21,00		
Cu	≤0,30		
Fe	Rest		
Mn, Si	≤0,35		
Мо	2,80 - 3,30		
Nb + Ta	4,75 - 5,50		
Ni	4,75 - 5,50		
P, S	≤0,015		
Ti	0,65-1,15		
Pb, Se	≤0,001		

Verwendung

Dieser Werkstoff eignet sich hervorragend für Anwendungen mit hohen Temperaturen und hohen Belastungen, bei denen Aluminium und Stahl aufgrund der Kriechneigung ungeeignet sind.

Ni718 wird beispielsweise für Pumpen, Gasturbinen, die Luft- und Raumfahrt, Mess-, Energie- und Prozesstechnik eingesetzt. Die Teile können mittels Wärmebehandlungen auf 40 HRC nachgehärtet werden.

Die chemische Zusammensetzung von Ni718 erfüllt den Anforderungen von ASTM F3055-14a. Nach dem Bauprozess können die Bauteile mechanisch nachbearbeitet, geschweißt, wärmebehandelt, draht- und senkerodiert, gestrahlt, poliert und beschichtet werden.

Thermische Eigenschaften

Prüfung	Einheit	Bedingung	Werte
Wärmeleitfähigkeit	W/mK	Bei 100 °C	18,3
Schmelzbereich	°C		1260-1335

Materialeigenschaft

Ni718 ist eine nickelbasierte Legierung die sich auch bei Temperaturen von bis zu 700°C mit Ihrer besonders guten Kriech-, Dauer-, Zug- und Bruchfestigkeit auszeichnet. Selbst bei kältetechnischen Anwendungen zeigt der Werkstoff sehr hohes Potenzial mit seinen besonderen Eigenschaften.

Zusätzlich ist die härtbare Nickel-Chrom Legierung sehr korrosionsbeständig und kann somit in extremen Umgebungen unter erhöhten Druck- und Hitzeeinfluss eingesetzt werden.

Mechanische Eigenschaften

Prüfung	Einheit	Werte nach Bauprozess	Werte nach Wärmebehandlung
Zugfestigkeit	MPa	930 ± 20	1130±10
Streckgrenze Rp 0,2%	MPa	660 ± 20	850 ± 20
Bruchdehnung	%	49 ± 5	66 ± 5
Brucheinschnürung	%	36 ± 2	31 ± 2
Härte, Rockwell C	HRC	20 ± 2	32 ± 1